
www.manaraa.com

University of South Florida
Scholar Commons

Graduate Theses and Dissertations Graduate School

January 2012

Human Motion Tracking for Assisting Balance
Training and Control of a Humanoid Robot
Ahmad Adli Manasrah
University of South Florida, manasrah@mail.usf.edu

Follow this and additional works at: http://scholarcommons.usf.edu/etd

Part of the American Studies Commons, Mechanical Engineering Commons, and the Medicine
and Health Sciences Commons

This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate
Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact scholarcommons@usf.edu.

Scholar Commons Citation
Manasrah, Ahmad Adli, "Human Motion Tracking for Assisting Balance Training and Control of a Humanoid Robot" (2012).
Graduate Theses and Dissertations.
http://scholarcommons.usf.edu/etd/4141

http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/grad?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarcommons.usf.edu/etd?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/439?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=scholarcommons.usf.edu%2Fetd%2F4141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarcommons@usf.edu

www.manaraa.com

Human Motion Tracking for Assisting Balance Training and Control of a Humanoid

Robot

by

Ahmad Manasrah

A thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science in Mechanical Egineering

Department of Mechanical Engineering

College of Engineering

University of South Florida

Co-Major Professor: Kyle Reed, Ph.D.

Co-Major Professor: Rasim Guldiken, Ph.D.

Craig Lusk, Ph.D

Date of Approval:

June 22, 2012

Keywords: Kinect, Center of Mass, Depth,

Skeleton, Visual Feedback

Copyright © 2012, Ahmad Manasrah

www.manaraa.com

Acknowledgments

I wish to acknowledge my co-major professors Dr. Kyle Reed and Dr. Rasim Guldiken

for their help and support over the past two years. I wish to thank the other committee

member Dr. Craig Lusk for the valuable information and advice. I also would like to

acknowledge all the faculty members in the Mechanical Engineering Department for their

support during my study.

www.manaraa.com

i

Table of Contents

List of Tables... iii

List of Figures.. iv

Abstract.. vi

Chapter 1: Introduction.. 1

Chapter 2: About Microsoft Kinect.. 4

2.1 Introduction.. 4

2.2 Kinect Overview... 5

2.3 Working Principle... 5

2.4 Software.. 7

2.5 Skeleton Tracking... 8

2.6 Advantages and Limitations... 11

2.7 Other Applications of Kinect.. 12

2.8 The Center of Mass... 13

2.8.1 The Center of Mass of a Human Body.. 13

2.8.2 Determining the Center of Mass.. 15

2.8.3 The Center of Mass and Kinect... 19

Chapter 3: NAO Robot... 23

3.1 Introduction.. 23

3.2 Background... 23

3.2.1 NAO... 23

3.2.2 NAO V3.3 Joints... 25

3.2.3 NAO's Sensors... 27

3.2.4 Coding... 28

3.3 Mimicking Human Arm Motions in a Humanoid Robot........................... 29

3.4 Mimicking a Human Standing on One Leg.. 33

3.5 Results ... 35

3.6 Conclusions.. 37

Chapter 4: Robot-Assisted Balance Training... 39

4.1 Introduction.. 39

4.2 Background... 39

4.2.1 Rehabilitation... 39

4.2.2 Device Components and Procedures... 41

www.manaraa.com

ii

4.3 Using the Kinect as Feedback about Proper Leaning

 Technique... 43

4.3.1 The Need for a Measure of Leaning.. 44

4.3.2 Providing Feedback about Leaning... 47

4.4 Results and Conclusions... 54

Chapter 5: Conclusions and Future Work.. 56

References.. 58

Appendices... 60

Appendix A: The Code of NAO and RABT.. 61

Appendix B: Permissions... 71

www.manaraa.com

iii

List of Tables

Table 2-1: Anthropomorphic Data of Body Segments... 18

Table 3-1: The Range of Left and Right Arms' Motors.. 27

www.manaraa.com

iv

List of Figures

Figure 2-1 Microsoft Kinect Components.. 5

Figure 2-2 The Internal Components of Kinect.. 6

Figure 2-3 A Simple Representation of How Kinect Works.. 7

Figure 2-4 A Depth Image of a Human Body.. 9

Figure 2-5 Detecting the Body Parts.. 10

Figure 2-6 Two Manikins with Different Poses... 14

Figure 2-7 The Center of Mass Outside the Body.. 15

Figure 2-8 The Center of Mass of a Two Point System... 16

Figure 2-9 Body Mass Distribution.. 19

Figure 2-10 The Vitruvian Man.. 20

Figure 2-11 COM of Each Segment in the Skeleton.. 22

Figure 3-1 NAO V3.3... 24

Figure 3-2 NAO's Arms Movement (Shoulder Roll)... 25

Figure 3-3 NAO's Arms Movements (Shoulder Pitch).. 26

Figure 3-4 NAO's Left Leg... 26

Figure 3-5 Calculating the Angle of the Left Shoulder.. 30

Figure 3-6 The Flowchart of NAO Code.. 31

Figure 3-7 NAO is Lifting the Right Foot.. 34

Figure 3-8 NAO Mimicking the User's Motion... 36

www.manaraa.com

v

Figure 3-9 NAO Lifting its Left Foot... 37

Figure 4-1 Robot Assisted Balance Training... 41

Figure 4-2 Vastus Lateralis... 43

Figure 4-3 The Center of Pressure of Leaning to the Left Properly............................... 45

Figure 4-4 The Center of Pressure of Leaning to the Right Improperly........................ 46

Figure 4-5 The Flowchart of RABT Code.. 48

Figure 4-6 Standing Upright... 50

Figure 4-7 Leaning to the Right Correctly... 51

Figure 4-8 Different Inappropriate Positions.. 52

Figure 4-9 A Snapshot of the Correct Lean.. 53

Figure 4-10 A Snapshot of the Incorrect Lean... 53

Figure 4-11 A Snapshot of Another Incorrect Lean... 54

www.manaraa.com

vi

Abstract

This project illustrates the use of the human's ability to balance according to his center of

gravity as demonstrated in two applications. The center of gravity of a human is

explained in detail in order to use it in controlling the Aldebaran NAO robot and in the

robot-assisted balance training.

The first application explains how a humanoid robot can mimic a human's movements via

a three dimensional depth sensor where the sensor analyzes the position of a user's limbs

and how the robot can lift one foot and balance on the other by redistributing the its body

mass when the user lifts his foot. The results showed that this algorithm enabled NAO to

successfully mimic the users' arms, and was able to balance on one foot by repositioning

its center of mass.

The second application investigates how individuals with stroke lean when undergoing

robot-assisted balance training. In some instances, they can develop inappropriate leaning

behaviors during the training. The Kinect sensor is used to assist in optimizing patients'

results by integrating it with the training program. The results showed that the Kinect

sensor can improve the efficiency of the process by giving users graphical information

about their mass distribution and whether they are leaning correctly or not.

www.manaraa.com

1

Chapter 1: Introduction

Since the Microsoft Kinect sensor has been released in 2009, many developers have built

applications and projects that use the sensor's ability to sense 3D images and detect

human body presence. Some of the projects focused on using the body gestures to control

a specific application through an interface. The video games industry is interested in

particular because of its revolutionary feature where players can control video games

using their body gestures. Besides this remarkable breakthrough in video games, Kinect

was being used in many applications such as: educational programs, security

applications, and physical rehabilitation.

All these features and abilities have made Kinect an interesting field of study, thus, it was

decided to test the sensor in real-life applications to investigate how efficient Kinect

could be. The objectives of this thesis are:

• Studying the human's ability to balance according to his center of gravity in

 two applications.

• Using the Kinect sensor features to calculate the center of mass of a human

 body.

• Applying human motion tracking with a humanoid robot by using the Kinect

 sensor as an interface device between the user (controller) and the robot.

• Studying a physical rehabilitation process, understanding the procedures and

 improving its results.

www.manaraa.com

2

Two different applications were chosen to study the human's balance and test the Kinect

sensor. The first application was using Kinect as an interface between users and the

Aldebaran NAO robot, which is a programmable humanoid robot that has remarkable

features. The objective of this interface is to enable NAO to imitate the human's arm and

leg movements. The Kinect sensor will create a set of data about a human's body joints,

and these data will be used on NAO to mimic the moves of the human arms. Having

NAO recognize the human movements is the first step of creating a hands-free

controllable robot that can do many tasks wirelessly. The Kinect sensor may be

considered the future of controlling humanoid robotsThe second application was using

the Kinect sensor in the robot-assisted balance training (RABT) which is a rehabilitation

program that was developed and built by Dr. Seok Hun Kim, PhD, and Dr. Kyle Reed,

PhD, at the University of South Florida. Physical therapy and rehabilitation can be very

slow and expensive especially for stroke patients who suffer from walking disabilities

and balance problems. The RABT trains patients to adapt their balance by applying an

external pulling force to their waists [14]. This method introduces a real-time visual

feedback to patients that has shown significantly improved results. The purpose of using

the Kinect sensor with RABT is to enhance the visual feedback, and improve patients'

ability to balance during the training.

Both applications are explained in detail in the following chapters. Chapter two

introduces the Kinect sensor, discusses its working principle, and highlights the sensor's

advantages and limitations. It also explains the principles of calculating the center of

mass of the human body, and how we can use these calculations with the data of the

Kinect sensor.

www.manaraa.com

3

Chapter three introduces the Aldebaran NAO and shows a brief background of the robot.

It also analyses its body extremities and compares between them and the human

extremities. The chapter shows how these information are used with the Kinect sensor to

have NAO react with human arm movements by calculating the arm angles. The chapter

also discusses how NAO can balance on one foot by redistributing its body mass as

controlled by a person lifting his foot. And finally, chapter three provides the results and

conclusions of using the Kinect sensor to control NAO at the end of the chapter.

Chapter four starts with a background about the robot-assisted balance training, and

explains how the training is done and what are the expected results. The chapter discusses

the common mistakes that patients usually do during the training where they shift their

body weight improperly, and the effects of these mistakes on the results. The chapter

connects these inforamtion with the Kinect sensor data to help patients undergoing RABT

to improve their training by giving them visual feedback about their leaning pattern.

Finally, chapter four provides the results of integrating the Kinect sensor with the robot-

assisted balance training.

Chapter five introduces the future works that may expand the use of the Kinect sensor

with these two applications.

www.manaraa.com

4

Chapter 2: About Microsoft Kinect

2.1 Introduction

Infrared distance measurement sensors have been widely used in various applications and

projects to measure the distance of objects, and they are commonly used in mobile

robotics to avoid obstacles and sense the presence of objects. These sensors consist of

transmitters and receivers where the sensor transmits an infrared beam to an object and

receives the reflection of the infrared light from the object's surface. The infrared sensor

is an example of determining the distance of objects, but in order to create a depth image

of the surrounding environment, an array of infrared sensors are needed as a simple idea

to create a 3D image. For instance, Panasonic has developed a 3D image sensor called

"D-imager" that uses an array of infrared LED's to create a three dimensional image and a

time-of-flight technology where the time required for the light to return to the receiver

after being reflected from an object is calculated by a processor. D-imager's operating

range is 1.2 m ~ 9 m, and works at frame rates up to 30 fps [1].

Microsoft Kinect is a sensing device owned by Microsoft, originally designed for Xbox

360 video game console which enables players to control their video games using their

own body gestures and voice commands. The device was announced in 2009 under the

name of "Project Natal", and has a unique 3D sensing technology which was developed

by the Israeli company PrimeSense [2].

www.manaraa.com

5

2.2 Kinect Overview

The Kinect sensor consists of an RGB camera, a 3D depth sensor in the front of the

Kinect, and multiple microphone arrays at the sides. The sensor also has a motorized tilt

that allows users to change the viewing angle plus or minus 27 degrees. The depth sensor

consists of two parts, an infrared projector, which is located on the left side of the RGB

camera, and receiver which is located on the right side of the camera. Figure (2-1) shows

the components of the sensor.

Figure 2-1: Microsoft Kinect Components [3].

2.3 Working Principle

The Kinect sensor provides 3D depth information of any object in front of it, which

allows users to use simpler ways to detect these objects, while most of the other systems

only provide 2D information, which requires more algorithms to detect the same objects.

Figure (2-2) shows the internal components of the Kinect sensor. The most important

components are the infrared transmitter and the receiver which are shown in the light

green color. The internal algorithm sends and receives data from the depth sensor to

process them.

www.manaraa.com

6

The most common way to calculate the distance of an object is by projecting infrared

light on it and then calculating the time it takes the light to reflect off the object and

return to the receiver, but the Kinect sensor works in a different way; the infrared

projector projects a fixed pattern of infrared spots onto the object, then the receiver

captures a shifted grid of these spots, the processor then calculates the offset of each of

the spots to generate a depth map. The Kinect sensor can measure the distance of an

object 2 meters away within 1 cm accuracy [2].

Figure 2-2: The Internal Components of Kinect [2].

www.manaraa.com

7

Figure 2-3: A Simple Representation of How Kinect Works [4].

Figure (2-3) explains how Kinect works, it represents the "depth mapping using projected

patterns" [4]. An illumination assembly (30) which has a single transparency (36) with a

fixed pattern of spots. This assembly has a light source (34) which illuminates through

the fixed pattern transparency, the pattern then reflects from the object (28) to the capture

assembly (32) where the image of the pattern is focused by a lens (40), then captured by

an image sensor (42). After that, the reflected image is processed to build a 3D map of

the object [4].

2.4 Software

When the Kinect sensor was released by Microsoft, the device was only dedicated to

video games. After that, PrimeSense introduced the first open source software for the

sensor (OpenNI) which enabled developers to access the main features of the sensor

www.manaraa.com

8

using Windows, and Linux machines. The raw data that was accessed allowed developers

to start their own projects and use the 3D depth feature. In 2011, a group of researchers

have done a real-time 3D reconstruction to the surrounding environment using the depth

data from the Kinect sensor [17].

2.5 Skeleton Tracking

Microsoft developed a software of skeleton tracking for the Kinect sensor that enables

Xbox players to use their body movements to control video games. This software was

only accessed by Microsoft, and that only alternative software that supports this feature

was NITE from PrimeSense. In June, 2011 Microsoft announced the first official release

of Kinect SDK (Software Development Kit) and it opened the door for more developing

with depth and skeleton tracking information. Skeletal tracking works only when the

depth data is enabled.

Building a skeleton requires a depth image of a human body. The sensor's algorithm

designs an intermediate body parts representation to map the body [5], some of these

parts are defined as body joints, and some of them represent the links that connect the

joints together. These parts are color coded, and the algorithm recognizes these colors to

detect left and right sides of the body then creates the body joints depending on these

color coded parts. Figure (2-4) explains how the skeleton is detected. The depth image is

represented as the gray scale image, and the algorithm detects the human presence in this

image and identifies the body parts, after that, the algorithm detects the joints of the

human and represents them in 3D space.

www.manaraa.com

9

Figure 2-4: A Depth Image of a Human Body [5]. © 2011 IEEE

The algorithm identifies the features of a certain object by determining the consistency of

its pixels using this equation [6] at any given pixel (�):

��	(�, �) 	= 	
� ��	 +	 �
��(�)� 	−	
� ��	 +	

�
��(�)� equation (1)

where:

•
�(�) : the depth at pixel �.

• � and � : the offsets of the pixel �, at image �, where � is the image number.

The offsets are divided by
�(�), and added to �. If the offset pixel lies on the

background, it will have a large depth value (since it is farther than �), which means that

the offset value will also be large. Thus, this offset pixel does not belong to the same

surface area where � is taken from. When the offset pixel's value is close to zero, it

means that both pixels belong to the same object surface, or in other words, to the same

body part.

www.manaraa.com

10

Figure (2-5) explains the two cases where the sensor is detecting which part of the body

the pixel � belongs to.

Figure 2-5: Detecting the Body Parts. (a) Shows a large pixel offset.

(b) Shows a small pixel offset [5]. © 2011 IEEE

The yellow cross represents the pixel �, and the red circles represent the offsets of � in

two directions (� and �). In figure (2-5 - a) the offset pixel of the function ���	 is too

large, while it is too small in figure (2-5 - b). The algorithm uses this information to

construct a line that connects two pixels from two different part areas to create a part of

the skeleton like the spine or the arm. This method depends only on a mathematical

operation and does not need any kind of image processing, and its results can be used

directly to create a skeleton.

The algorithm is trained on thousands of randomly different training images to increase

the prediction accuracy of the skeleton.

www.manaraa.com

11

2.6 Advantages and Limitations

The Microsoft Kinect sensor has many advantages that differentiate it from other distance

measurement sensors, such as:

• Voice and facial recognition, Kinect sensor has the ability to receive voice

commands in different languages to do certain operations like adjusting the tilt

motor for instance. It also supports facial recognition and the face tracking

capability which is now supported in the new version of SDK (Kinect SDK v-

1.5).

• The skeleton tracking feature, where a person's skeleton can be constructed by

detecting his/her body joints.

• Easy installation, the Kinect sensor has a software toolkit that can be

 downloaded from Microsoft and it does not need any data input devices or

 special connections, the Kinect sensor comes with a power supply cable and a

 USB.

• The price of Kinect sensor is about $150 which is fairly inexpensive compared

 to other depth sensors.

• The Kinect sensor has a tilt motor that allows the operator to reposition it at

 any vertical angle between 27 and -27 degrees.

• The range of detection of the sensor is very good for sighting human bodies

 from 0.8 m to 4 m.

• The Kinect sensor can work in the dark without any source of light.

• Kinect has a feature of detecting the position of unseen joints, for instance, if a

 person is standing in front of the Kinect sensor and one of his arms is out of

www.manaraa.com

12

 the sensor's sight range, Kinect can detect the positions of the unseen joints

 based on the configuration of the other joints.

The Kinect sensor also has some disadvantages that could limit its abilities such as:

• The facial recognition. In some applications, the facial recognition might be a

 limitation in the working field. the Kinect sensor cannot be used to detect a

 human skeleton without detecting his/her face first. In this thesis, the Kinect

 sensor was not very effective by placing it behind a person.

• Working with the Kinect outdoor was not very effective, since the sensor is

 sensitive to direct light, and may receive different IR light from any source.

• The software of the Kinect sensor does not support skeleton detection with

 two or more Kinects working at the same time on one machine yet. The depth

 feature in the software supports up to six Kinect sensors at the same time, but

 the infrared signals may interfere with each other.

• Despite the Kinect's ability to detect a human presence by recognizing his face

 and body posture, sometimes it might create a skeleton on some other objects

 like a table or a chair, especially when the object appears to have parts that

 may look like extremities.

• The developing in Kinect sensor is mainly directed towards video gaming and

 entertaining applications.

• The facial detection property may raise some security and privacy questions.

2.7 Other Applications of Kinect

One of the interesting researches that was done with the Kinect sensor was the "3D

indoor exploration with a computationally constrained micro-aerial vehicle" [18] that

www.manaraa.com

13

presents the ability of the Kinect sensor to explore an indoor environment and construct a

3D visualization of it. The Kinect sensor is mounted on a micro-aerial vehicle which flies

in the environment. The Kinect sensor collects data of the geometry of the environment

and construct a 3D image of it.

Another application that uses the Kinect sensor technology is detecting early stages of

serious illness in older adults, and protecting them from falling [19]. Many seniors may

not notice the slight change in their activities which may lead to serious injury. Multiple

Kinect sensors are used to monitor seniors' activities inside their homes to construct a 3D

presentation of the person to read his/her body movements. The sensors detect the

walking pattern and the geometry of seniors and send data to health care providers to

alert them in case of emergencies.

2.8 The Center of Mass

2.8.1 The Center of Mass of a Human Body

The center of mass of a human in a uniform gravitational field (also known as the center

of gravity) is the point where all the masses of the human body can be considered to be

concentrated for some purposes, it is located at the center of the torso of the body where

the human is standing upright, arms down, "at about 55% of the total height" [8]. The

location of the center of mass depends on the pose of the body, for example, if a person is

standing up, rising both arms over his/her shoulders, then the center of mass would be

roughly over the belly button at about the height of the stomach. The center of mass can

even be outside the body, if the person manages to bend his/her upper body to any side.

www.manaraa.com

14

Figure 2-6: Two Manikins with Different Poses [20].

Figure (2-6) shows two manikins with different poses, the one on the left represents a

human body standing up, its center of mass is located in the torso pointing down right

between the feet, the manikin is balanced because both legs support the center of mass

equally. The manikin on the right poses where the body weight is shifted to its right leg,

the center of mass is exactly located above the right leg to keep the balance. The

manikin's left leg can actually be lifted and still be stable; because the center of mass is

over the right leg.

Figure (2-7) shows another two manikins where their center of masses are located outside

their bodies. The manikin on the left is bending down in an almost 90 degree angle, the

center of mass is located underneath the stomach area outside the body because of the

body's mass distribution in this position. The manikin on the right is bending backwards,

arms up, the center of mass is also located outside the body.

www.manaraa.com

15

Figure 2-7: The Center of Mass Outside the Body [20].

The human body can maintain its quasi static balance in any standing position as long as

the center of mass is located above the support area, which is the area between the feet.

The four manikins in figure (2-6) and figure (2-7) are all in different standing positions,

but all the center of masses are located above the support areas to keep the balance. If the

center of mass shifts outside this area at any standing position in any direction, the body

will not maintain balance and start to fall. When the body is moving, the center of mass

may not necessarily be located above the support area; walking can be thought of as a

state of constantly falling forward where one foot is placed to recover stability and the

falling again.

2.8.2 Determining the Center of Mass

We can calculate the center of mass of a single object where its shape and orientation do

not change, and because the object's mass will not shift to any direction, the location of

the mass center will not change too. The center of mass of a discrete system is at the

position ���→ [9]:

www.manaraa.com

16

���→ =	���→��
�� �

Equation (2)

where �� � is the summation of masses for discrete system. Figure (2-8) shows a system

of two discrete masses m1 and m2 where m2 > m1. It is obvious that the center of mass of

such a system would be between the two masses and closer to the larger one.

Figure 2-8: The Center of Mass of a Two Point System.

r1 and r2 are two vectors that represent how far the two masses are away from the origin

point (reference point). According to the equation above, the position of the center of

mass of the system �!→ is:

�!→ =	���→��
�� �

																																											

	= 	 ��
→�� + �"→�"
�� +�"

www.manaraa.com

17

		= 	 ��
→(�� +�") 	− 	��→�" +	�"→�"

�� +�"

=	��→ +	# �"
�� +	�"

$ (�"→ −	��→)

Equation (3)

From equation (3), if m2 >> m1 so that m1 is negligible, the center of mass will be over

m2. If m1 >> m2 so that m2 is negligible, then the center of mass will be over m1, which

makes sense according to equation (2). If the two masses are equal m1= m2, the center of

mass will be exactly in the middle.

The human body consists of parts connected to each other with joints, and every time the

positions of these parts and joints are changed, the distribution of the mass changes

depending on the body posture, hence, the location of the center of mass changes.

Physicians and scientist tried to calculate the center of mass of a human body with

different ways like the "immersion method" where they submerged body segments in

water to see how much water was displaced [10]. Other computational methods were

used by comparing body segments with cylindrical shapes and circular cones.

Table (2-1) below represents the center of mass of each body segment according to

professor Rudolfs Dilliris and Renato Contini's method of "reaction change", the method

calculates the reaction force of a board while the subject lies on it. The board is supported

by a fixed base at one end and a sensitive weighing scale at the other end. Results showed

that the human body can be divided to segments, each segment has a proximal and distal

endpoints which represent the human joints. The fractional body mass shows the weight

percentage of each segment in the body. For instance, the fractional body mass of the

head and trunk is about 53% of the body mass.

www.manaraa.com

18

Table 2-1: Anthropomorphic Data of Body Segments [10].

Body

Segment

Proximal

Endpoint

Distal

Endpoint

Fractional

Body Mass

COM location from

Proximal Endpoint

Foot Ankle Joint

Center

Virtual Toe 0.019 0.429

Shank Knee Joint

Center

Ankle Joint

Center

0.044 0.433

Thigh Hip Joint

Center

Knee Joint

Center

0.115 0.433

Hand &

Forearm

Elbow Marker Wrist Marker 0.025 0.682

Upper

Arm

Shoulder

Marker

Elbow Marker 0.031 0.436

Head &

Trunk

Midpoint

between

hip joint

centers

Midpoint

between

shoulder

markers

0.532 0.54

The fractional body mass varies from person to person depending on the body

proportions, it also differs from males to females. The head and trunk segment takes the

largest fractional body mass, so the center of mass will always be located close to it. Each

segment has its own center of mass where its location depends on the body segment's

shape and weight. For example, the center of mass of the thigh is located at 0.433 the

distance between the hip joint and the knee joint, it means that the center of mass is closer

to the hip joint based on the weight distribution of the thigh.

Figure (2-9) shows the weight distributions of a human body, the sizes of the spheres are

proportional to segment masses. This set of masses is similar to the one shown in figure

(2-8), and with the same calculations, the center of mass of the human body can be found

and its location will always be closer to the biggest mass in the system.

www.manaraa.com

19

Figure 2-9: Body Mass Distribution.

2.8.3 The Center of Mass and Kinect

Chapter two introduced the Kinect sensor and explained the working principle of the

depth measurement and the skeleton feature of the sensor. It also discussed the center of

mass of the human body by showing its importance for the human's balance and

explaining how to calculate it in a system of masses. All these background information

can be used to achieve the objectives of this section, which are:

• To use the ability of the Kinect sensor to construct and track the user's

 skeleton.

• To calculate the center of mass of the human body using the Kinect sensor as

 a data input device.

Microsoft Kinect provides depth and location data to each joint in the detected skeleton.

The sensor detects 20 point for each skeleton which are located as in figure (2-10) that

www.manaraa.com

20

represents the famous drawing by Leonardo da Vinci, The Vitruvian man with Kinect's

joints located on it.

Figure 2-10: The Vitruvian Man. With 20 Joints of Kinect [3].

Using the anthropomorphic data shown in table (1), the skeleton is divided into 9

segments: The trunk(1 segment), upper arms (2 segments), forearms (2 segments), thighs

(2 segments), and shanks (2 segments). Hands and feet segments are neglected because of

their relatively small fractional body masses.

The Kinect sensor provides the locations of the 20 joints in 3D space, they are used to

calculate the center of masses of the 9 segments according to table (1). For example, the

center of mass of the trunk is the point (X, Y, Z), where:

X = hip center (x) + [shoulder center(x) - hip center(x)] * 0.54

Y = hip center (y) + [shoulder center(y) - hip center(y)] * 0.54

Z = hip center (z) + [shoulder center(z) - hip center(z)] * 0.54

The distance between the shoulder center and the hip center is multiplied by 0.54 then

added to the hip center to locate the center of mass. The same calculation applies for the

www.manaraa.com

21

rest of the segments by only changing the fractional location from the proximal to the end

point. This is a snippet of the code that calculates the center of mass of the skeleton of

the user by using the locations of the Kinect sensor's joints:

Point COM1 = new Point(xx[0] + (xx[2] - xx[0]) * 0.54,

 yy[0] + (yy[2] - yy[0]) * 0.54);

Point COM2 = new Point(xx[8] + (xx[9] - xx[8])*0.436,

 yy[8] + (yy[9] - yy[8])*0.436);

Point COM3 = new Point(xx[4] + (xx[5] - xx[4])*0.436,

 yy[4] + (yy[5] - yy[4])*0.436);

Point COM4 = new Point(xx[9] + (xx[10] - xx[9])*0.682,

 yy[9] + (yy[10] - yy[9])*0.682);

Point COM5 = new Point(xx[5] + (xx[6] - xx[5])*0.682,

 yy[5] + (yy[6] - yy[5])*0.682);

Point COM6 = new Point(xx[16] + (xx[17] - xx[16])*0.433,

 yy[16] + (yy[17] - yy[16])*0.433);

Point COM7 = new Point(xx[12] + (xx[13] - xx[12])*0.433,

 yy[12] + (yy[13] - yy[12])*0.433);

Point COM8 = new Point(xx[17] + (xx[18] - xx[17])*0.433,

 yy[17] + (yy[18] - yy[17])*0.433);

Point COM9 = new Point(xx[13] + (xx[14] - xx[13])*0.433,

 yy[13] + (yy[14] - yy[13])*0.433);

The code calculates the center of masses of the nine segments using the data provided in

table (1). For instance, COM3 is the location of the center of mass of the left upper arm in

XY coordinates, the difference between xx[4] and xx[5] (which are the locations of the

left shoulder and left elbow in X respectively) is multiplied by 0.436 which is the

www.manaraa.com

22

correspondent data of the upper arm in table (2-1). Figure (2-11) shows an image of a

skeleton taken from Kinect where the red points represent the center of masses of the 9

segments, and the white points represent the 20 points of the skeleton. The main center of

mass of body is determined depending on the weighted average based on the fractional

body mass of each segment, each center of mass is multiplied by its fractional body mass.

Then, the results are added to each other and divided by the sum of fractions as in

equation (2) where ���→ is the location of the center of mass in XYZ for the whole body.

Figure 2-11: COM of Each Segment in the Skeleton.

The yellow point in figure (2-11) is the center of mass of the body according to the

calculations of the 9 segments which are represented in the red color. The Kinect sensor

provides continuous information about the locations of the skeleton's joints, which means

that the center of mass will be continuously changing according to the user's movements.

www.manaraa.com

23

Chapter 3: NAO Robot

3.1 Introduction

The objectives of the work presented in this chapter are:

• Applying human motion tracking with NAO using the Kinect sensor as an

 interface between the user and the robot.

• Having NAO balance on one foot using the principle of the center of mass

 when the human similarly standing on one foot.

3.2 Background

3.2.1 NAO

NAO is a programmable humanoid robot that has a body of 25 degrees of freedom, two

cameras, four microphones, two IR emitters and receivers, one inertial board, nine tactile

sensors, and eight pressure sensors [11]. Figure (3-1) shows NAO's body parts, joints and

sensors. NAO is equipped with tactile sensors on the head and the wrists, infrared sensors

and cameras in its head. NAO is also equipped with speakers and microphones to

communicate with users.

The figure also shows NAO's body joints: the head joint, the shoulder joints, the elbow

joints, the wrist joints, the hip joint, the knee and ankle joints.

www.manaraa.com

24

Figure 3-1: NAO V3.3. Parts, Joints, and Sensors.

NAO was developed by a French company called Aldebaran Robotics in 2004 for

academic purposes. More than 1000 have been sold to universities worldwide to be used

in research [12]. NAO can walk, sit, play soccer, hear, talk, feel and perform different

poses with its 57 cm tall body, and because of these abilities, it is being used widely in

medical fields mainly with sick children to cheer them up and specially with autism

treatment in children [12].

NAO was developed to perform some remarkable routines like performing the "Tai Chi"

dance where it shows the robot's ability to keep its balance on one leg, or narrating a

short story for entertaining purposes.

www.manaraa.com

25

3.2.2 NAO V3.3 Joints

The following figures and table show how much freedom NAO's arms and legs have in

degrees and radians. Table (3-1) and figures (3-2, 3-3, and 3-4) are taken from NAO

Software 1.12.3 documentation [13].

Figure (3-2) shows the left and the right arm of the robot. The robot can roll its shoulders

in a full 94 degrees and elbows in 88.5 degrees.

Figure 3-2: NAO's Arms Movement (Shoulder Roll).

From NAO Software 1.12.4 Documentation [13].

There are some limitations in NAO's arms movements according to the figure above,

especially in its elbows, but the left and right shoulders roll fairly well compared to

human shoulders.

Figure (3-3) shows another movement of the NAO's arms. The left and right arms can

rotate 239 degrees around their axis.

www.manaraa.com

26

Figure 3-3: NAO's Arms Movements (Shoulder Pitch).

From NAO Software 1.12.3 Documentation [13].

Figure 3-4: NAO's Left Leg [13].

NAO's legs move in a good range as shown in figure (3-4) which allow it to perform

different maneuvers and positions. These ranges give NAO the ability to walk, sit, and

play soccer in a fairly human-like way. Note that NAO's right leg has the same ranges.

www.manaraa.com

27

Table (3-1) shows the ranges of both arms' motors in degrees and radians. NAO's elbows

can go from full stretch to 88.5 degrees, however there is some limitation in elbows

bending comparing to the human elbow which can go more than 90 degrees.

Table 3-1: The Range of Left and Right Arms' Motors [3].

Joint Name Motion Range (degrees)
Range

(radians)

LShoulderPitch
Left shoulder joint front and

back (Y)
-119.5 to 119.5

-2.0857 to

2.0857

LshoulderRoll
Left shoulder joint right and

left (Z)
-18 to 76

-0.3142 to

1.3265

LElbowRoll Left elbow joint (Z) -88.5 to -2
1.5446 to

0.0349

RshoulderPitch
Right shoulder joint front and

back (Y)
-119.5 to 119.5

-2.0857 to

2.0857

RshoulderRoll
Right shoulder joint right and

left (Z)
-76 to 18

-1.3265 to

0.3142

RElbowRoll Right elbow joint (Z) 2 to 88.5
0.0349 to

1.5446

3.2.3 NAO's Sensors

NAO is equipped with different types of sensors which allow the robot to explore the

environment around it, and avoid obstacles:

• Contact sensors, which are distributed on its feet, head, and hands. The

 sensors on its feet are located at the tip of each foot (bumpers), which alarms

 NAO that it has hit an object or an obstacle with its feet. The other sensors are

 tactile sensors, which are located in NAO's head (three sensors) and the hands

 (three sensors), and they allow the robot to sense objects with its hands.

• Force sensitive resistors are located at the bottom of NAO's feet, each foot has

 four resistors. The values of the resistors change according to how much

www.manaraa.com

28

 pressure is applied on NAO's feet, these values help the robot to distinguish

 whether it is standing on its feet or not, and to redistribute its body weight

 while it is walking. The sensors' working range is 0 N~25 N [13].

• The sonar, which is two ultrasonic sensors (two transmitters, and two

 receivers), that are located on NAO's chest, they are used to detect obstacles

 and objects in a 0.25 m ~ 2.55 m range with a resolution of 1 cm [13].

3.2.4 Coding

The coding language that is used in the control NAO is C sharp. It is a very efficient high

level language that was developed by Microsoft. The Kinect sensor works perfectly with

this language since Kinect is also a Microsoft product. NAO is also supported with this

language that runs on dot NET framework. The code of the Kinect sensor starts with

some definitions for initializing the sensor's parameters, like the RGB, depth, and

skeleton streams. The depth stream and the skeleton stream work together to locate the

body's joints in 3D space. The skeleton consists of 20 joints, each joint represents a

specific location on the human body: the head, the shoulder center, left and right

shoulders, left and right elbows, left and right wrists and hands, the spine, hips, left and

right knees, left and right ankles and feet.

The skeleton is built when the user's body is tracked, each point of the skeleton is mapped

to a depth image to represent the body in 3D space, the X and Y data are expressed in

pixels, and Z data are expressed in centimeters. Each point also has a fourth value, W,

which represents the point's confidence level of a value from 0 to 1, the 0 value indicates

that the joint is not clearly visible for the sensor and its position may not be correct, the 1

www.manaraa.com

29

value indicates that the joint's position is visible. The differences between the joints in X

and Y directions represent the distances between the joints in centimeters.

3.3 Mimicking Human Arm Motions in a Humanoid Robot

The previous section of this chapter introduced the humanoid robot NAO and showed its

features and abilities. This section discusses the developed control strategies used so that

the NAO could track a human arm's motions and to balance on one leg using the Kinect

sensor as an interface.

As discribed in chapter two, the Kinect sensor has the ability to build a skeleton from the

depth image of a human body. This skeleton with detected joints will be used to calculate

angles between the upper arms and the torso, and between the upper arms and the

forearms of a human. The remaining angles can be calculated from the positions of leg

joints, like the knee angle.

NAO's body parts can be controlled by setting angles for both arms and legs that were

shown in figures 3-2, 3-3, and 3-4. The idea is to use measured angles of human body

parts to control NAO's movements, in other words, NAO will mimic the user's

movements. NAO, on the other hand, is supported by coding libraries that enable users to

access the robot's actuators. The Kinect sensor will work as an interface between the user

and NAO who can be in two different places.

Creating the skeleton and having all data of each point makes the calculation of angles

straightforward. The next part of the code calculates the angles needed to control NAO

with the Kinect sensor. 3D vectors are created from shoulders, elbows, and hands

positions in order of calculate the angles [see appendix A].

www.manaraa.com

30

Angles between the upper arms and the X axis represent shoulder roll movements in

NAO, but the angles between the upper arms and the Z axis represent shoulder pitch

movements in NAO. For example, Figure (3-5) shows two 3D vectors: the left shoulder

vector (1) and the left elbow vector (2), the angle between it and the X axis (1, 0, 0) and

vector number 2 will be the complementary angle of the (left shoulder roll) angle in

NAO. Safety conditions are added to the code to protect the robot, like making the

maximum value of the left shoulder roll 76 degrees instead of 90 degrees, because NAO

cannot roll its arms in the XY plane more than 76 degrees while a human can. For

comparison, a protractor was used to measure a human's upper extremities' ranges and the

results were: the shoulder roll range is about 120~150 degrees, and the shoulder pitch is

250~260 degrees. NAO's full shoulder roll range is 94 degrees, and shoulder pitch is 239.

Note that the human has a larger range than the NAO in these and most other joints.

Figure 3-5: Calculating the Angle of the Left Shoulder.

The following flowchart shows how the code receives the information from the Kinect

sensor, processes it and sends it to NAO. The yellow blocks indicates to the Kinect SDK

and the blue blocks indicates to the NAO SDK.

www.manaraa.com

31

Figure 3-6: The Flowchart of NAO Code

www.manaraa.com

32

The code starts with setting Kinect's parameters like the RGB, depth and skeleton

features. The yellow blocks represent Kinect's SDK and the blue blocks represent NAO's

SDK. The Kinect sensor's smoothing parameters are set to 30% to reduce the jittering of

the joints' positions. NAO motion and memory proxies are provided after setting Kinect's

parameters. NAO's motors stiffness will be set to 50% of the full power (which is enough

to move the NAO's extremities) to reduce jerkiness in NAO's motions. When the skeleton

is tracked, the joints provided by Kinect will be mapped on the color and depth images,

the next block (labeled with 1) creates 20 red circles on the joints' locations to make them

visible to the user. Block number 2 tests the height of the user's foot above the ground, if

the height is more than 30 cm, NAO will do the routine in block number 3 (which will be

explained later in section 3.4). Block number 4 shows the process where the vectors of

the users arm joints are created. Block number 5 shows the calculation of the angle which

depends on the dot product between the two vectors is calculated by:

�	. � = |�||�| cos
 Equation (7)

where
 is the angle between the two vectors. Then, the angle is converted to radians to

use it directly with NAO's code.

To explain the procedure of calculating the arm angles, here is a snippet of the code

showing the calculation of the left upper arm roll angle:

 kinectshoulderleft = new System.Windows.Media.Media3D.

 Vector3D(xx[4], h[4], (zz[4] * 100));

 kinectelbowright = new System.Windows.Media.Media3D.

 Vector3D(xx[9], h[9], (zz[9] * 100));

 shoulder_left1 = kinectshoulderleft - kinectelbowleft;

www.manaraa.com

33

 System.Windows.Media.Media3D.Vector3D newx = new

 System.Windows.Media.Media3D.Vector3D(1, 0, 0);

 angleshoulderleft1 = System.Windows.Media.Media3D.

 Vector3D.AngleBetween(newx, shoulder_left1);

 motion.setAngles("LShoulderRoll",(float)(angleshoulderleft1

), 0.1f);

The first two lines show the starting and end point of the left upper arm vector where the

left shoulder and left elbow joints are used, the depth location of these joints is in meters

and multiplied by 100 to be converted to centimeters. Vector "newx" is the unit vector of

the X coordinate. The variable "angleshoulderleft1" represents the angle between

the left upper arm vector and "newx" vector, the code provides a direct way to find the

angle between vectors in the command "AngleBetween". The angle is in degrees and

must be converted to radians before sending it to NAO. After that, the code sends the

angle to NAO through the motion proxy with the command "setAngles".

3.4 Mimicking a Human Standing on One Leg

The second objective is testing NAO's ability to balance on one foot using its center of

mass. The Kinect sensor will be used to detect any significant vertical change in the

user's feet positions, if the user lifts one foot more than 30 cm off the ground, NAO will

lift the same foot and balance on the other. Because of the differences in weight

distribution between NAO and human, the NAO cannot perfectly mimic the motions of a

human while balancing on one foot. Figure (3-7) shows NAO's three phases of lifting the

right foot, in (A) NAO is standing in its initial position which is the first phase, the red

arrow indicates that NAO's center of mass is the supported area between its feet, the

www.manaraa.com

34

second phase is shifting the center of mass to the left leg as represented in (B) from the

same figure, the third phase is lifting the right foot.

Figure 3-7: NAO is Lifting the Right Foot.

In the initial position, the distance between the positions of NAO's feet and its torso in the

X axis is 5 centimeters. This means that the torso should be shifted 5 cm to the left or

right in order to be over the left or right foot respectively. Setting the angles of left-hip-

roll and right-hip-roll shown in figure (3-4) and for +19 degrees or -19 degrees makes the

position of the torso above one of the feet. Notice that when NAO is at the initial

position, the X location of its center of mass is the same X location of the torso, it is

important that NAO starts from the initial position.

The code for lifting NAO's foot is described as follows:

• The Kinect sensors detects if the user's foot is higher than 30 cm above the

 ground.

• Setting the angles of both hips to 0.33 rad and both ankles to -0.33 rad

 (shifting to the right), or the angles of the hips to -0.33 rad and ankles to 0.33

 rad (shifting to the left).

www.manaraa.com

35

• Pause for 1.5 second to regain the balance at this pose, and eliminate jerks.

• Lifting the required foot about 70 degrees, and bending the knee to the back,

 to prevent the foot from hitting the ground when it goes back to the initial

 position.

Note that NAO does not mimic the exact motion of the user's leg; it only reacts with the

motion by lifting the correspondent leg because the mass distribution on NAO is not the

same as a human.

NAO can go back to the initial position by reversing these steps, the lifted foot goes back

from 70 degrees to the initial location (NAO's leg angle at the initial position is 25

degrees), then pausing for 1.5 second to balance back on two feet, then shifting the hips

and angles back to their initial angles (0 degree). The speed of these phases can be

controlled by setting the fraction of NAO's motors maximum speed.

3.5 Results

Kinect sensor provides an excellent skeleton presentation for the human body which

allows developers to use it in many research fields, the sensor is considered a huge step in

controlling robots wirelessly. On the other hand, NAO has the ability to move and act

like a human and it can be controlled easily by accessing its features. The code that was

explained previously combines the quality of the depth image of the Kinect and the

definition of NAO's actuators. The Kinect sensor gives the skeleton data, which are then

used to determine the angles of the left and right arms, after that, they are implemented in

NAO's arms movements. This method saves the trouble of trying to downsize the length

of a human arm into NAO's relatively short arms. Figure (3-8) includes eight situations of

NAO with the user.

www.manaraa.com

36

A

B

C

D

E

F

G

H

Figure 3-8: NAO Mimicking the User's Motion.

Figure (3-8 A) represents NAO in its initial position, pictures B and C show the NAO's

reaction to the user's left arm, where the angle of the left arm is calculated and used with

NAO correspondent arm. Picture D and E show the pitch angles of the right and left arms

www.manaraa.com

37

respectively. Pictures F and G represent the reaction of NAO with two arms together.

And picture H shows NAO bending its left elbow with the user.

Figure (3-9) shows NAO lifting its left foot by shifting its body weight to the right.

Figure 3-9: NAO Lifting its Left Foot.

We can also see that the user's right leg is supporting his center of mass (represented in

yellow) which enables him to balance on one foot. Figure (3-9) also shows how the robot

is still able to mimic the arm movements while standing on one leg.

3.6 Conclusions

Applying the user's arm motion tracking was successfully done on NAO with some

limitations caused by NAO's arm structure and the safety factors in the code [see

Appendix A] and the Kinect sensor was successfully used as an interface between the

user and NAO. There was a time delay in following the arm and leg movements, and that

time varies depending on how fast the skeleton is being detected. For the second

objective, NAO was able to balance on one foot and follow the human legs by lifting its

www.manaraa.com

38

foot when the user lifts his foot more than 30 cm above the ground, however, the robot

does not mimic the user's leg movement since the structure of NAO's leg is not like the

human's. The principle of the center of mass was used to balance NAO on one foot by

repositioning its center of mass over the supporting leg.

www.manaraa.com

39

Chapter 4: Robot Assisted Balance Training

4.1 Introduction

This chapter describes how the Kinect can be used as an assessment and feedback tool to

an individual using the robot-assisted balance training. The objectives of this chapter are:

• To calculate the center of masses of patients undergoing the robot-assisted

 balance training using the Kinect sensor to study their weight distribution

 during the training.

• To improve the visual feedback of the balance training by showing patients

 useful information about their leaning techniques.

• To increase the efficiency of the training program by making patients learn

 how to shift their body weights properly.

4.2 Background

4.2.1 Rehabilitation

The rehabilitation process is a medical activity that helps people who have experienced a

serious injury, illness, or surgery to recover their physical and/or mental skills and

capabilities. The rehabilitation can be physical to help the patients regain their mobility,

strength, or balance. It can be a speech-language pathology, for the people who suffer

from speaking, reading, and/or writing disabilities. Sometimes, the rehabilitation process

can be psychiatric to help patients recover their mental capabilities [16].

www.manaraa.com

40

People who have experienced serious strokes are highly susceptible to physical

disabilities depending on the location of the damage in the brain and how severe the

damage is. For instance, if the damage happens in the part that controls the balance and

coordination in the brain, the patient may suffer from impaired balance in standing or

walking.

Most patients following stroke undergo rehabilitation programs to recover. The recovery

processes can be very slow in most of the programs, and not so efficient if patients cannot

adapt with them. In order to have a fast and more efficient rehabilitation program, a new

process was introduced called rehabilitation robotics which aims to optimize the physical

rehabilitation by using robotic technologies in the process. Rehabilitation robots have

many advantages like efficiency and the recovery time especially in treating balance

impairment.

The robot-assisted balance training (RABT) is a training program that improves the

recovery of stroke patients who suffer from impaired balance in standing or walking. The

program returns a visual feedback to patients in order to help them improve their walking

patterns. The training program applies an external pulling force on the healthy sides of

patients to force them to shift their body weights towards the affected sides. The visual

feedback shows them how much weight they should put on one foot in order to complete

a proper move. The purposes of this training program are: to help patients to develop

their balance control during the training and to learn how to shift their center of gravities

to different postures without losing their balance, which is the precursor to being able to

effectively walk.

www.manaraa.com

41

4.2.2 Device Components and Procedure

Figure (4-1) shows the physical components of the training program. The training

program was developed by Dr. Seok Hun Kim, an Assistant Professor in the School of

Physical Therapy and Rehabilitation Sciences in the University of South Florida, and was

built in the Rehabilitation Engineering and Electromechanical Design Laboratory by Dr.

Kyle B. Reed, an Assistant Professor in the Department of Mechanical Engineering in the

University of South Florida.

Figure 4-1: Robot Assisted Balance Training[14].

A. monitor, B. pulley, C. waist built, D. pulling cable,

E. frame, F. Wii balance board, G. motor, H. control box.

The patient will be wearing a waist belt and a safety harness during the training session;

the waist belt is attached to two motors through two pulleys with two ropes, two force

www.manaraa.com

42

measuring devices are mounted on the ropes. The two motors and the force sensors are

controlled by a computer. The computer reads the values of the force sensors and sends

signals to the two motors to pull the ropes to maintain a constant tension [14].

The two motors apply pulling forces up to 60 Newton to the patient's pelvis while

standing on the balance board. The patient is asked to shift his/her body weight and pay

attention to the monitor to watch how much pressure is applied on the affected side. After

reaching the specified amount of weight on one foot, the patient has to take a step

forward, then step backward with the same procedure. The trials are repeated up to 100

times. The patient is expected to show a significant adaption in his/her walking pattern

after the experiment, this forces the patient to use his/her affected side more often for a

brief period. The patient might show more similarity in his/her walking and balance

control pattern.

The robot-assisted balance training depends on how the patient moves his/her center of

pressure towards the affected side. Shifting the center of pressure to one side properly

requires the patient to also shift his center of mass over the affected leg in order to be

prepared to take a step forward or backward. Preliminary results with healthy individuals

showed little adaptation when subjects leaned incorrectly, but showed beneficial after

effects when leaning correctly. The after effects manifest as an asymmetric step pattern

when walking over ground, which was tested before and after training on the RABT.

www.manaraa.com

43

Figure 4-2: Vastus Lateralis [15].

Patients should counter the external pulling force applied on them by leaning properly to

the other side to train their "vastus lateralis" muscles shown in figure (4-2). But, incorrect

leaning could limit muscles improvement during the training, train the wrong muscle, or

sometimes develop wrong walking and balance control patterns.

4.3 Using the Kinect as Feedback about Proper Leaning Technique

The previous section introduced the robot-assisted balance training as a physical

rehabilitation program for post-stroke individuals that helps them regain their balance.

The objectives of this work are:

• To calculate the center of masses of individuals using the Kinect sensor to

 study their weight distribution during the training.

• To provide visual feedback of the balance training by showing patients useful

 information about their leaning techniques.

www.manaraa.com

44

• To increase the efficiency of the training program by teaching patients how to

 shift their body weights properly.

Microsoft Kinect sensor can be integrated as an enhancing technique in the training

program by returning another feedback for the patient or the supervisor indicating that the

patient is leaning properly or not. As mentioned before, Kinect has the ability to detect

human's joints and construct a skeleton based on them. Chapter two explains how the

center of mass of a human body can be calculated using the Kinect sensor. This center of

mass can be used to determine whether the patient (undergoing the RABT) is doing the

training correctly or not.

The patient is required to shift his/her center of mass above the position of the affected

leg. In order to do that, the patient must shift his/her hip only and keep the trunk upright

to counter the external pulling force. The balance board that is used in the training

program returns raw data of the center of pressure of the patient, but the center of

pressure may not be at the same location of the center of mass of the body because the

center of pressure is influenced by the amount of force the patient applies on each leg

while shifting to either side. Also, the center of pressure does not significantly change

between a correct lean and an incorrect lean.

4.3.1 The Need for a Measure of Leaning

The initial balance training only took measures of the individual's center of pressure

using two balance boards. However, as I will show here, the data is insufficient to

determine if the individual is leaning correctly. Figures (4-3 and 4-4) show the data of the

center of pressure taken from the balance board: Figure (4-3) shows the change of the

center of pressure while leaning to the left correctly. The x axis represents the operating

www.manaraa.com

45

time of the balance board in seconds, the y axis represents the shifting distance the center

of pressure. The raw data of the balance board are converted to the real world coordinates

(seconds and centimeter) as follows: The distance between the user's feet while standing

on the board is 30 cm, while the raw data of the board range from 1 to -1, each point of

the data is multiplied by 15 to get a range from 15 cm to -15 cm. The raw data is taken at

60 points per second speed, so the time base is divided by 60 to distribute the 900 points

on the operating time (which is 15 seconds).

Figure 4-3: The Center of Pressure of Leaning to the Left Properly.

www.manaraa.com

46

The first two seconds in figure (4-3) represent a random set of data (around -25 cm) since

the user is not standing on the balance board. At (2.5 sec) the user steps on the balance

board with his right foot and we can see the output data is changing significantly up to 15

cm, where the user's full body weight is concentrated on the right foot at that moment.

Then the readings goes back to the center point (0 cm) when the user puts the other foot

on the board. The pressure of the body starts shifting from the center to the right until it

reaches 15 cm at the point where the body reaches the furthest position to the right, then

goes back to the center again. At the 14 second point, the user steps down from the

balance board with his left foot.

Figure 4-4: The Center of Pressure of Leaning to the Right Improperly.

www.manaraa.com

47

Figure (4-4) also shows the user's center of pressure while leaning to the right side

incorrectly, the pressure builds up until it reaches the maximum, then returns to the center

again. Both figures are very similar in the way the center of pressure shifts to the

maximum location which is 15 cm in both cases. The figures show that the center of

pressure was shifted to the extreme right but they do not give a clear idea about whether

the leaning was correct or not.

Because of the similarity between these two figures, the feedback monitor will always

show the patient that he/she has reached the desired amount of pressure regardless of the

way the patient leaned. That will cause a mix between the correct and incorrect

movements, which means having a wrong training technique, which is not effective for

training.

4.3.2 Providing Feedback about Leaning

This problem could be solved by assigning a specialized person who teaches the patient

how to lean and take a step properly. After that, the patient may learn how to perform the

rest of the training correctly, or may develop an incorrect training after he/she feels tired

during the training. A better way to solve that problem is to use the Kinect sensor with

the system to give a feedback to the patient the entire training session. The sensor will be

applied in front of the training area facing the patient and will be connected to the

feedback monitor. The patient will notice two horizontal bars (one for the left leaning and

one for the right leaning). The following flowchart shows how the the Kinect's data are

processed to the training program:

www.manaraa.com

48

Start Load Kinect

parameters

Open RGB

stream

Start skeleton

feature

Skeleton

tracked?
No

Yes

Map joints on

color and depth

images

Create 20 joints &

giving them the

locations of joints

Calculate COM of

each segment of

skeleton in xyz

Calculate COM of the

skeleton by

multiplying each

COM of segments by

its fractional body

mass

Set right bar value by

calculating the difference

between COM and right

foot and between COM

and center of shoulders in

x coordinate

Change bar color

to green and

showing "GOOD"

in green

if difference < 2cm

Keep bar color on

red and showing

"BAD" in red

Yes

No

if (COM - r foot)< 2

and

if (COM - center

shoulder) < 2

then (Yes)

Legend: Kinect SDK

 RABT feedback

 Label

 Figure 4-5: The Flowchart of RABT Code

www.manaraa.com

49

The red card in the flowchart explains the conditions of the bar colors. When the

difference between the X locations of the center of mass and the right foot and between

the center of mass and the shoulder center is less than 2 cm, the bar will be fully loaded

and turn to green. When the patient starts leaning correctly to the right side for instance,

the Kinect sensor calculates the difference between three points: his/her center of mass

(which is explained in chapter 2), the position of the right foot, and the position of the

midpoint between the left and right shoulders locations (the shoulder center). When the

difference between the three points is less than 2 cm, it means that the three points are on

the same vertical imaginary line. As the patient approaches the correct position, the right

side bar starts loading in red color, and when the patient reaches the wanted position

correctly, the bar will be fully loaded and will change into green, a green "GOOD" will

illuminate on the monitor in front of the patient.

Here is a snippet of the code that shows the calculations of the bars' values:

 progressBar1.Value = 30 - (COM - xx[15]);

 progressBar2.Value = 30 - (xx[19] - COM);

 if ((30 - (COM - xx[15])) > 28 && (30 - (xx[2] - xx[15])) > 28)

 {

 progressBar1.Foreground = new SolidColorBrush(Colors.Green);

 label1.Foreground = new SolidColorBrush(Colors.White);

 label2.Foreground = new SolidColorBrush(Colors.Green);

 }

 else

 {

 progressBar1.Foreground = new SolidColorBrush(Colors.Red);

www.manaraa.com

50

 label1.Foreground = new SolidColorBrush(Colors.Red);

 label2.Foreground = new SolidColorBrush(Colors.White);

 }

The value 30 represents the value of the bar, when the difference between COM and

xx[15] (the left foot) reaches its maximum value (15 cm), the bar's value will be 30 - 15

where the bar is half loaded. Notice that " label1" represents the word "BAD" and

"label2" represents the word "GOOD". When the difference is less than 2 cm, the bar

(which is fully loaded) will turn to green, the word "GOOD" illuminates in green and

"BAD" disappears. If the difference in more than 2 cm, the bar's color remains red, the

"GREEN" label disappears and the "BAD" label illuminates in red.

The following figures represent different postures of the user in front of the Kinect

sensor. Figure (4-6) shows the positions of the joints while standing upright, the red

points represent the 20 joints of the skeleton, and the yellow point represents the center of

mass of the body which can change according to the joints' positions. The center of mass

in this figure is located on the trunk right above the hip point.

Figure 4-6: Standing Upright.

www.manaraa.com

51

Figure (4-7) is an example of leaning to the right correctly, the center of mass (the yellow

point) is located above the right foot point, the trunk is still upright, and the shoulder

center point is also aligned with the center of mass and the right foot on the white line.

Figure 4-7: Leaning to the Right Correctly.

At this position the patient will notice the right foot bar changing into green and a green

"GOOD" illuminates. The patient can now take a step forward or backward and continue

the training.

Figure (4-8) shows different positions of inappropriate leaning. In (4-8 A), the hips are

shifting to the right and the center of mass is located roughly above the right foot, but the

upper body part is bending to the opposite direction; it is the most common mistake being

done by patients because they feel more balanced at this position while there is an

external force bulling them the other way. (4-8 B) is also a bad way of leaning where the

patient uses his/her upper body part to shift to one side, this position trains the wrong leg

muscles, and patients may feel unbalanced doing it. The white line shows clearly that the

www.manaraa.com

52

center of mass might go outside the balance area between the two feet which may cause

the patient to fall.

Figure 4-8: Different Inappropriate Positions.

A) Shifting the hips to the right with bending the upper part of the body to the left.

B) Bending trunk to the right without shifting the hips.

C) Shifting to the left and bending the trunk. D) Bending the knees with the leaning.

In 3-D, the hips are slightly shifted to the side, but the center of mass is still inside the

balance area and the knees are bent. The patient must not bend his/her knees during the

training because it might change the calibrations of the external pulling force around the

waist area.

Patients can develop many inappropriate moves during the training session because they

may feel uncomfortable from the pulling force or the safety harness they are wearing. But

integrating the Kinect sensor with the system can improve the training efficiency and

may also decrease the number of required sessions.

www.manaraa.com

53

The following figures show snapshots of the program. Figure (4-9) shows the correct

leaning of the user, the indicator bar is fully loaded and a word "GOOD" is showing in

green.

Figure 4-9: A Snapshot of the Correct Lean.

Figure 4-10: A Snapshot of the Incorrect Lean.

www.manaraa.com

54

If the patient reaches the wanted position and the three points are not aligned, the bar may

be fully loaded but stays red and a red "BAD" illuminates on the monitor. Figure (4-10)

and (4-11) show an inappropriate leaning to the left in two different ways, the indicator

bar is red and a word "BAD" is showing. The user will know that his move was not

correct.

Figure 4-11: A Snapshot of Another Incorrect Lean.

4.4 Results and Conclusions

This chapter showed that the robot-assisted balance training is an interesting

rehabilitation process where patients can learn how to adapt their walking pattern and

regain their balance. The center of mass of the patient was calculated using the Kinect

sensor and was used to study the user's weight distribution during the training. The visual

feedback was improved, and showed a significant improvement of the leaning

techniques. The robot-assisted balance training did not previously give a clear feedback

to patients who perform the training improperly.

www.manaraa.com

55

The Kinect sensor increased the efficiency of the balance training and showed indications

of offering useful information to healthy individuals where the they can see how their

center of masses are being repositioned and learn how to lean properly during the

training. Also, The feedback of the Kinect sensor is affected with the distance between

the sensor and the patient, and the surrounding environment of the test. Note that the

Kinect sensor feedback was not tested on real patients, and the use of the Kinect sensor

did not affect the training procedure, it is an addition to RABT's visual feedback.

www.manaraa.com

56

Chapter 5: Conclusions and Future Work

As was discussed in the introduction chapter, this thesis studied the property of the center

of mass of the human body, and using it with two applications by using the Kinect sensor.

The first application studied the ability of the humanoid robot NAO to track a user's arm

motion and balance on one foot using the Kinect sensor. The results showed that NAO

can balance on one foot by repositioning its center of mass. The second application

discussed the robot-assisted balance training and the impact of the incorrect leaning on

the training results. It also discussed the use of the Kinect sensor in the training program

to calculate the center of mass of patients. The feedback of the Kinect sensor during the

training showed a potential improvement in patients' leaning techniques.

There are several future works that may be done in order to improve the results of this

thesis. Firstly, it is highly recommended to use the latest version of Kinect SDK in the

future. The newest version was released in May 21, 2012, and it offers seated skeletal and

facial tracking with advanced speech recognition options. Also, using two or more Kinect

sensors to interface with NAO to optimize the operation of determining the arm gestures.

Until this date, Kinect's software supports the skeleton feature for only one sensor, it does

however support the depth feature of multiple Kinects at the same time.

www.manaraa.com

57

As discussed in chapter four, it will be more efficient to test the effect of Kinect on the

robot-assisted balance training with real patients in the future, and compare between the

results before and after using the sensor. Furthermore, improving Kinect's graphical

interface that is being used with RABT, which may increase the efficiency of the

feedback.

www.manaraa.com

58

References

1. A 3D Multi-Aperture Image Sensor Architecture Keith Fife, Abbas El Gamal and H.-

S. Philip Wong Department of Electrical Engineering, Stanford University,

Stanford, CA 94305-4055

2. Fairhead Harry. All About Kinect. 2012. Retrieved April, 2012. Retrieved from:

http://www.i-programmer.info/babbages-bag/2003-kinect-the-technology-.html

3. Fernandez, D. "Installing and using the Kinect sensor (Beta 2 sdk), June 2011,

Retrieved from: http://channel9.msdn.com/Series/Kinect SDKQuickstarts/

Understanding-Kinect-Hardware

4. Freedman Barak Binyamina, Shpunt Alexander, Machline Meir Ashdod, Arieli Yoel

Jerusalem. Depth mapping using projected patterns. 2008. Retrieved April, 2012.

www.freepatentsonline.com

5. Shotton J. (Microsoft Research Cambridge), Fitzgibbon A., Cook M., Blake A. Real-

time Human Pose Recognition in Parts from Single Depth Images. ISBN: 978-1-

4577-0394-2. 2011.

 6. V. Lepetit, P. Lagger, and P. Fua. Randomized trees for real-time keypoint recognition.

 In Proc. CVPR, pages 2:775–781, 2005.

 7. Mohammad, T. Using ultrasonic and infrared sensors for distance measurement,

 World academy of science, Engineering and technology 2009.

 8. Garcia, A. Physics of balance and weight shift, 2011. Retrieved: May 2012 from

 http://www.algarcia.org/AnimationPhysics/BalanceTutorial.pdf

 9. Pratap, R. and Ruina, A. Introduction statics and dynamics, Oxford university press,

 2008, Retrieved from: http://ruina.tam.cornell.ed/BookCOMRuinaPratap.pdf

 10. Drillis, R. Contini, R. and Bluestein, M. Body segment parameters: A survey of

 measurement techniques. 1964

 11. Aldebaran Robotics. NAO key features. Retrieved April 2012. http://www.aldebaran-

 robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html

12. Aldebaran Robotics. Who is NAO. Retrieved May 2012. http://www.aldebaran-

robotics.com/en/Pressroom/About/NAO.html

www.manaraa.com

58

13. Aldebaran Robotics. NAO software documentation 1.12.4. Retrieved April 2012.

http://developer.aldebaran-robotics.com/doc/1-12/

14. Kim, H. and Reed , K. "Gait modification in healthy individuals following robot-

 assisted balance training", Society for Neuroscience Annual General Meeting

 Abstracts, 2012, submitted.

15. Muscles of the Lower Extremity, Epidemiology and End Results (SEER) training

 modules, Retrieved in 20, May, 2012 from:

 http://training.seer.cancer.gov/anatomy/muscular/groups/lower.html

16. Gunnar Bolmsjö, Håkan Neveryd and Håkan Eftring. “Robotics in Rehabilitation”.

 IEEE Trans. On Rehabilitation Engineering, 1995.

17. Izadi S, Kim D Hilliges O, Molyneaux D, Newcombe R, Kohli P, Shotton J, Hodges

S, Freeman D, Davison A, and Fitzgibbon A. KinectFusion: Real-time 3D

Reconstruction and Interaction Using a Moving Depth Camera. 2011. Retrieved

from: http://research.microsoft.com/apps/pubs/default.aspx?id=155416

18. Shen S, Michael N, and Kumar V. 3D indoor exploration with a computationally

constrained MAV. University of Pennsylvania. Retrieved from:

http://mrsl.grasp.upenn.edu/rss2011workshop/resources/Shen.pdf

19. Stone, E and Skubic, M. Evaluation of an Inexpensive Depth Camera for Passive In-

Home Fall Risk Assessment. University of Missouri. 2011. Retrieved from:

http://eldertech.missouri.edu/files/Papers/StoneE/Evaluation%20of%20an%20Inexpensiv

e%20Depth%20Camera.pdf

20. TL;DR Yet another anthro art tutorial. Chapter 2: Human anatomy and figure drawing.

Retrieved from: http://hippie.nu/~nocte/tutorial-currentchapter/xhtml-

chunked/index.html.

www.manaraa.com

60

Appendices

www.manaraa.com

61

Appendix A: The Code of NAO and RABT

using System;

using System.Collections.Generic; using System.Linq;
using System.Text; using System.Windows;
using System.Windows.Controls; using System.Windows.Data;

using System.Windows.Documents;

using System.Windows.Input;

using System.Windows.Media;

using System.Windows.Media.Imaging;

using System.Windows.Navigation;

using System.Windows.Shapes;
using Microsoft.Kinect;

using Coding4Fun.Kinect.Wpf;

using System.IO;
using System.Diagnostics;

using Aldebaran.Proxies;

using System.Timers;
using Microsoft.WindowsMobile.DirectX;

namespace new_kinect_2
{

/// <summary>
/// Interaction logic for MainWindow.xaml
/// </summary>
public partial class MainWindow : Window
{

public MainWindow()
{

InitializeComponent();
}

KinectSensor sensor1;

TextWriter positions = new

StreamWriter("joints.txt"); TextWriter center = new

StreamWriter("center of mass.txt"); TextWriter

oldpositions = new StreamWriter("old joints.txt");

int TimeCounter = 1;

// Loading Kinect parameters

private void Window_Loaded(object sender, RoutedEventArgs e)
{

sensor1 = KinectSensor.KinectSensors[0];

var parameters = new TransformSmoothParameters
{

Smoothing = 0.3f,
Correction = 0.0f,

Prediction = 0.0f,

JitterRadius = 1.0f,

MaxDeviationRadius =

0.5f

};

sensor1.SkeletonStream.Enable(parame

ters);

sensor1.DepthStream.Enable(DepthImageFormat.Resolution640x480

Fps30);

sensor1.ColorStream.Enable(ColorImageFormat.RgbResolution640x

480Fps30); sensor1.AllFramesReady += new

EventHandler<AllFramesReadyEventArgs>
(sensor1_AllFramesReady);

www.manaraa.com

62

Appendix A (Continued)

sensor1.Start();
}

void sensor1_AllFramesReady (object sender, AllFramesReadyEventArgs

e)
{

image1.Source = e.OpenColorImageFrame().ToBitmapSource();

skeletonjoints (e);
}

double[] xx;
double[]yy;

double[] zz;

// Loading NAO proxies

MotionProxy motion = new MotionProxy("131.247.10.161", 9559);

//naosim: 127.0.0.1 NAO: 131.247.13.118
MemoryProxy memory = new

MemoryProxy("131.247.10.161", 9559); List<float>

oldspace = new List<float>();

private void Pause_Click(object sender, RoutedEventArgs e)
{

motion.setAngles("LShoulderPitch", 1.57f,

0.2f); motion.setAngles("LShoulderRoll",

0.0f, 0.2f);

motion.setAngles("RShoulderPitch", 1.57f,

0.2f); motion.setAngles("RShoulderRoll",

0.0f, 0.2f);

motion.setStiffnesses("Body", 0.0f);
}
private void Play_Click(object sender, RoutedEventArgs e)
{

motion.setStiffnesses("Body", 0.5f);
}

double angleshoulderleft1

= 0; double

angleshoulderleft2 = 0;

double angleshoulderright1

= 0; double

angleshoulderright2 = 0;

double angleelbowleft = 0;

double angleelbowright =

0;

private void skeletonjoints (AllFramesReadyEventArgs e)
{

canvas1.Children.Clear ();
SkeletonFrame skeletonFrame = e.OpenSkeletonFrame ();

if (skeletonFrame != null)
{

// skeleton data
Skeleton [] skeletonData = new Skeleton

[skeletonFrame.SkeletonArrayLength]
;

skeletonFrame.CopySkeletonDataTo(skeleton

www.manaraa.com

63

Appendix A (Continued)

Data); oldspace =

motion.getPosition("Torso", 0, true);

foreach (var skeleton in skeletonData)
{

var i = 0;

double

ground;

xx = new double[20];
yy = new double[20];

zz = new double[20];

double[] Cx;
Cx=new double[20];

double[] Cy;
Cy=new double[20];

double[] Cz;
Cz=new double[20];

double[] h;
h=new double[20];

double[] COMz;
COMz = new double[10];

if (skeleton.TrackingState==SkeletonTrackingState.Tracked)
{

foreach (Joint joint in skeleton.Joints)
{

DepthImagePoint depthpoint =

sensor1.MapSkeletonPointToDepth (joint.Position,

sensor1.DepthStream.Format);
ColorImagePoint colorpoint =

sensor1.MapSkeletonPointToColor (joint.Position,

sensor1.ColorStream.Format);
xx[i] = depthpoint.X;

yy[i] = depthpoint.Y;

zz[i] =

joint.Position.Z; h[i]

= 480 - depthpoint.Y;
canvas1.Children.Add(new Ellipse()
{

Margin = new Thickness(colorpoint.X,

colorpoint.Y, 0, 0), Fill = new

SolidColorBrush(Colors.Red),
Width = 10, Height =

10}); i = i + 1;
}

if (h[19] >=

h[15])

ground =

h[15];
else ground = h[19];

positions.Write(Math.Round(tim.Elapsed.TotalMilliseconds,

0) + " ")
;

for (i = 0; i < 20; i++)
{

www.manaraa.com

64

Appendix A (Continued)

Cz[i] = zz[2] -

zz[i]; Cx[i] = xx[i]

- xx[2]; h[i] = (h[i]

- ground)/2; Cy[i] =

(h[i] - h[2]);

positions.Write(+ xx[i] + " " + Math.Round(h[i], 0)

+ " " + Math.Round(zz[i], 2)+ " ");
}

TimeCounter =

TimeCounter+1; if

(TimeCounter % 10 == 0)
{

//NAO Leg movements

if (h[15] > 30)
{

motion.wbEnable(false);

motion.setAngles("RAnkleRoll", -0.33f,

0.1f); motion.setAngles("LAnkleRoll", -

0.33f, 0.1f);

motion.setAngles("RHipRoll", 0.33f,

0.1f); motion.setAngles("LHipRoll",

0.33f, 0.1f);

System.Threading.Thread.Sleep(1500);

motion.setAngles("LHipPitch", -1.25f,

0.1f); motion.setAngles("LKneePitch",

0.85f, 0.1f);

}
else if (h[19] > 30)
{

motion.wbEnable(false);

motion.wbFootState("Fixed", "LLeg");

motion.wbEnableBalanceConstraint(true,

"Legs"); motion.setAngles("RAnkleRoll",

0.33f, 0.1f);

motion.setAngles("LAnkleRoll", 0.33f,

0.1f); motion.setAngles("RHipRoll", -

0.33f, 0.1f);

motion.setAngles("LHipRoll", -0.33f,

0.1f);

System.Threading.Thread.Sleep(1500);

motion.setAngles("RHipPitch", -1.25f,

0.1f); motion.setAngles("RKneePitch",

0.85f, 0.1f);

motion.wbGoToBalance("LLeg", 1.0f);
}
else if (h[15] < 25 && h[15] > 10 || h[19]

< 25 && h[19] > 10)
{

motion.setAngles("RHipPitch", -0.436f, 0.1f); motion.setAngles("LHipPitch", -

0.436f, 0.1f); System.Threading.Thread.Sleep(1500);

motion.setAngles("RKneePitch", 0.7f, 0.1f); motion.setAngles("LKneePitch",

0.7f, 0.1f); motion.setAngles("LAnkleRoll", 0.0f,

www.manaraa.com

65

Appendix A (Continued)

0.1f); motion.setAngles("RAnkleRoll",

0.0f, 0.1f); motion.setAngles("RHipRoll",

0.0f, 0.1f); motion.setAngles("LHipRoll",

0.0f, 0.1f);

motion.setAngles("LAnklePitch", -0.35f,

0.1f); motion.setAngles("RAnklePitch", -

0.35f, 0.1f); motion.wbGoToBalance("Legs",

1.0f);

System.Threading.Thread.Sleep(1500);
}

{

// vectors for robot

System.Windows.Media.Media3D.Vector3D

shoulder_right1;

System.Windows.Media.Media3D.Vector3D

shoulder_right2;

System.Windows.Media.Media3D.Vector3D

shoulder_left1;

System.Windows.Media.Media3D.Vector3D

shoulder_left2;

//vector of kinect

System.Windows.Media.Media3D.Vector3D

kinecthipcenter;

System.Windows.Media.Media3D.Vector3D

kinecthandleft;

System.Windows.Media.Media3D.Vector3D

kinecthandright;

System.Windows.Media.Media3D.Vector3D

kinectshouldercenter;

System.Windows.Media.Media3D.Vector3D

kinectshoulderleft;

System.Windows.Media.Media3D.Vector3D

kinectshoulderright;

System.Windows.Media.Media3D.Vector3D

kinectelbowleft;

System.Windows.Media.Media3D.Vector3D

kinectelbowright;

kinecthipcenter = new

System.Windows.Media.Media3D.Vector3D (xx[0], h[0], zz[0]);

//kinecthipcenter.Normalize();
kinecthandleft = new

System.Windows.Media.Media3D.Vector3D (xx[7], h[7], (zz[7] * 100));

//kinecthandleft.Normalize();
kinecthandright = new

System.Windows.Media.Media3D.Vector3D (xx[11], h[11], (zz[11] * 100));

//kinecthandright.Normalize();
kinectshoulderleft = new

System.Windows.Media.Media3D. Vector3D(xx[4], h[4], (zz[4] * 100));

//kinectshoulderleft.Normalize();
kinectshoulderright = new

System.Windows.Media.Media3D. Vector3D(xx[8], h[8], (zz[8] * 100));

//kinectshoulderright.Normalize();
kinectshouldercenter = new System.Windows.Media.Media3D. Vector3D(xx[2], h[2],

zz[2]);

www.manaraa.com

66

Appendix A (Continued)

//kinectshouldercenter.Normalize();
kinectelbowleft = new

System.Windows.Media.Media3D.Vector3D (xx[5], h[5], (zz[5] * 100));

//kinectwristleft.Normalize();
kinectelbowright = new

System.Windows.Media.Media3D. Vector3D(xx[9], h[9], (zz[9] * 100));

//kinectwristright.Normalize();

shoulder_left1 = kinectshoulderleft -

kinectelbowleft; shoulder_left2 = kinectelbowleft

- kinecthandleft; shoulder_right1 =

kinectshoulderright - kinectelbowright;

shoulder_right2 = kinectelbowright -

kinecthandright;

// new axis

System.Windows.Media.Media3D.Vector3D newx = new

System. Windows.Media.Media3D.Vector3D(1, 0, 0);//new

System.Windows.Media.Media3D.Vector3D(xx [0], 0, 0);//kinectshoulderright

- kinectshoulderleft; //newx.Normalize();

System.Windows.Media.Media3D.Vector3D newy = new

System. Windows.Media.Media3D.Vector3D(0, 1, 0);//new

System.Windows.Media.Media3D.Vector3D(0, h [0], 0);//kinectshouldercenter -

kinecthipcenter; //newy.Normalize();
System.Windows.Media.Media3D.Vector3D newz = new

System. Windows.Media.Media3D.Vector3D(0, 0,

1);//System.Windows.Media.Media3D.Vector3D. CrossProduct(newx, newy);

angleshoulderleft1 =

System.Windows.Media.Media3D.Vector3D. AngleBetween(newx, shoulder_left1);

angleshoulderleft1 = 1.57 - (angleshoulderleft1 * Math.PI / 180);

angleshoulderleft2 =

System.Windows.Media.Media3D.Vector3D. AngleBetween(shoulder_left1, newz);

angleshoulderleft2 = angleshoulderleft2 * Math.PI / 180;

angleshoulderright1 =

System.Windows.Media.Media3D.Vector3D

.AngleBetween(newx, shoulder_right1); angleshoulderright1 = (1.57 -

(angleshoulderright1 * Math.PI / 180));

angleshoulderright2 =

System.Windows.Media.Media3D.Vector3D

.AngleBetween(shoulder_right1, newz); angleshoulderright2 =

angleshoulderright2 * Math. PI / 180;

angleelbowleft =

System.Windows.Media.Media3D.Vector3D. AngleBetween(newz, shoulder_left2);

angleelbowleft = ((angleelbowleft * Math.PI / 180) -
1.57);

angleelbowright =

System.Windows.Media.Media3D.Vector3D. AngleBetween(newz, shoulder_right2);

angleelbowright = (1.57 - (angleelbowright * Math. PI / 180));

if (angleshoulderleft1 < 0.0f) {

angleshoulderleft1 = 0.0f;

www.manaraa.com

67

Appendix A (Continued)

}
if (angleshoulderleft1 > 1.57f) {

angleshoulderleft1 = 1.
57f; }

if (angleshoulderleft2 < 0.0f) {

angleshoulderleft2 = 0.0f;
}

if (angleshoulderleft2 > 1.57f) {

angleshoulderleft2 = 1.
57f; }

if (angleelbowleft > 0) { angleelbowleft =

0.0f; }

if (angleelbowleft < -1.57) { angleelbowleft = -

1.57f; } motion.setAngles("LShoulderRoll",

(float)
(angleshoulderleft1), 0.1f);

motion.setAngles("LShoulderPitch", (float)
(angleshoulderleft2), 0.1f);

motion.setAngles("LElbowRoll",

(float)(angleelbowleft), 0.
1f);

if (angleshoulderright1 > -0.6f) {

angleshoulderright1 = -0
.68f; }

if (angleshoulderright1 < -1.4f) {

angleshoulderright1 = -1
.57f; }

if (angleshoulderright2 < 0.0f) {

angleshoulderright2 = 0.
0f; }

if (angleshoulderright2 > 1.17f) {

angleshoulderright2 = 1.
57f; }

if (angleelbowright < 0) { angleelbowleft =

0.0f; }

if (angleelbowright > 1.57) { angleelbowleft =

1.57f; } motion.setAngles("RShoulderRoll",

(float)
(angleshoulderright1 + 0.4), 0.1f);

motion.setAngles("RShoulderPitch", (float)
(angleshoulderright2), 0.1f);

motion.setAngles("RElbowRoll",

(float)(angleelbowright), 0.
1f);

}

}

Point COM1 = new Point(xx[0] + (xx[2] - xx[0]) *

0.54, yy[0] + (yy
[2] - yy[0]) * 0.54);

Point COM2 = new Point(xx[8] + (xx[9] - xx[8]) * 0.436,

yy[8] + (yy [9] - yy[8]) * 0.436);
Point COM3 = new Point(xx[4] + (xx[5] - xx[4]) * 0.436,

yy[4] + (yy [5] - yy[4]) * 0.436);
Point COM4 = new Point(xx[9] + (xx[10] - xx[9]) *

www.manaraa.com

68

Appendix A (Continued)

0.682, yy[9] + (yy[10] - yy[9]) * 0.682);
Point COM5 = new Point(xx[5] + (xx[6] - xx[5]) * 0.682,

yy[5] + (yy [6] - yy[5]) * 0.682);
Point COM6 = new Point(xx[16] + (xx[17] - xx[16]) * 0.433,

yy[16] + (yy[17] - yy[16]) * 0.433);
Point COM7 = new Point(xx[12] + (xx[13] - xx[12]) * 0.433,

yy[12] + (yy[13] - yy[12]) * 0.433);
Point COM8 = new Point(xx[17] + (xx[18] - xx[17]) * 0.433,

yy[17] + (yy[18] - yy[17]) * 0.433);
Point COM9 = new Point(xx[13] + (xx[14] - xx[13]) * 0.433,

yy[13] + (yy[14] - yy[13]) * 0.433);

COMz[0] = zz[2] + (zz[0] - zz[2]) * 0.54;
COMz[1] = zz[8] + (zz[9] - zz[8]) * 0.436;
COMz[2] = zz[4] + (zz[5] - zz[4]) * 0.436;
COMz[3] = zz[9] + (zz[10] - zz[9]) * 0.682;
COMz[4] = zz[5] + (zz[6] - zz[5]) * 0.682;
COMz[5] = zz[16] + (zz[17] - zz[16]) * 0.433;
COMz[6] = zz[12] + (zz[13] - zz[12]) * 0.567;
COMz[7] = zz[17] + (zz[18] - zz[17]) * 0.433;
COMz[8] = zz[13] + (zz[14] - zz[13]) * 0.433;
COMz[9] = ((COMz[0] * 0.532) + (COMz[1] * 0.031)

+ (COMz[2] * 0.
31) + (COMz[3] * 0.025) + (COMz[4] * 0.025)

+ (COMz[5] * 0.115) + (COMz[6] * 0.115) +

(COMz[7] * 0.044) +
(COMz[8] * 0.044)) / 0.962;

Point COM = new Point(((COM1.X * 0.532) + (COM2.X * 0.031)

+ (COM3. X * 0.031) + (COM4.X * 0.025) + (COM5.X * 0.025)
+ (COM6.X * 0.115) + (COM7.X * 0.115) + (COM8.X *

0.044) + (COM9.X * 0.044)) / 0.962,
((COM1.Y * 0.532) + (COM2.Y * 0.031)

+ (COM3.Y * 0.
31) + (COM4.Y * 0.025) + (COM5.Y * 0.025)

+ (COM6.Y * 0.115) + (COM7.Y * 0.115)
+ (COM8.Y * 0

.044) + (COM9.Y * 0.044)) / 0.962);

canvas1.Children.Add(new Ellipse()
{

Margin = new Thickness(COM.X, COM.Y,

0, 0), Fill = new

SolidColorBrush(Colors.Yellow), Width

= 10,

Height = 10
});

// Kinect with RABT

//Bar value:

progressBar1.Value = 50 - (COM.X -

xx[15]); progressBar2.Value = 50 -

(xx[19] - COM.X);
if ((50 - (COM.X - xx[15])) > 48 && (50 -

(xx[2] - xx[15])) > 48)
{

www.manaraa.com

69

Appendix A (Continued)

progressBar1.Foreground = new

SolidColorBrush(Colors.Green); label1.Foreground =

new SolidColorBrush(Colors.White);

label2.Foreground = new

SolidColorBrush(Colors.Green);
}
else
{

progressBar1.Foreground = new

SolidColorBrush(Colors.Red); label1.Foreground =

new SolidColorBrush(Colors.Red); label2.Foreground

= new SolidColorBrush(Colors.White);
}
if ((50 - (xx[19] - COM.X)) > 48 && (50 -

(xx[19] - xx[2])) > 48)
{

progressBar2.Foreground = new

SolidColorBrush(Colors.Green); label1.Foreground =

new SolidColorBrush(Colors.White); label2.Foreground

= new SolidColorBrush(Colors.Green);
}
else
{

progressBar2.Foreground = new

SolidColorBrush(Colors.Red); label1.Foreground =

new SolidColorBrush(Colors.Red); label2.Foreground

= new SolidColorBrush(Colors.White);
}

center.WriteLine(+(Math.Round((COM.X), 2)) + " " +

(Math.Round((480 - COM.Y - ground) / 2, 0)) + " " +
(Math.Round(COMz[9], 2)));

}
}

}
}

void Kinectstop(KinectSensor sensor1)
{

if (sensor1 != null)
{

sensor1.Stop();
}
//if (sensor2 != null)
//{
// sensor2.Stop();
//}

}

private void UP_Click(object sender, RoutedEventArgs e)
{

if (sensor1.ElevationAngle < sensor1.MaxElevationAngle)
{

sensor1.ElevationAngle = sensor1.ElevationAngle + 5;
}

}

www.manaraa.com

70

Appendix A (Continued)

private void DOWN_Click(object sender, RoutedEventArgs e)
{

if (sensor1.ElevationAngle > sensor1.MinElevationAngle)
{

sensor1.ElevationAngle = sensor1.ElevationAngle - 5;
}

}

private void Window_Closed(object sender, EventArgs e)
{

Kinectstop(sensor1)

;

//Kinectstop(sensor

2);

positions.Close();

center.Close();

}

private void Close_Click(object sender, RoutedEventArgs e)
{

motion.setAngles("LShoulderPitch", 1.57f,

0.2f); motion.setAngles("LShoulderRoll",

0.0f, 0.2f);

motion.setAngles("RShoulderPitch", 1.57f,

0.2f); motion.setAngles("RShoulderRoll",

0.0f, 0.2f);

motion.setStiffnesses("Body", 0.0f);

Kinectstop(sensor1);

//Kinectstop(sensor

2);

positions.Close();

oldpositions.Close(

); center.Close();

Environment.Exit(0)

;
}

}
}

www.manaraa.com

71

Appendix B: Permissions

• The permission of using figures 2-6 and 2-7 is found in this website:

 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en

 Here is a snapshot of the web page:

• The permission of using figure 4-2 is found in this website:

 http://training.seer.cancer.gov/citation.html

 Here is a snapshot of the web page:

www.manaraa.com

72

Appendix B (Continued)

• The permission of using figures 2-1, 2-2 and 2-10 are taken from the author

 Dan Fernandez. Here is a snapshot of the permission:

www.manaraa.com

73

Appendix B (Continued)

• The permission of using figures 2-4 and 2-5 are taken from the publisher

 IEEE. Here is a snapshot of the permission:

	University of South Florida
	Scholar Commons
	January 2012

	Human Motion Tracking for Assisting Balance Training and Control of a Humanoid Robot
	Ahmad Adli Manasrah
	Scholar Commons Citation

	tmp.1344451685.pdf.QgJND

